$num_thy_1^{2,24}$

ABS: $b \mid a$ divides STM: divides_wf STM: comb_for_divides_wf STM: zero_divs_only_zero STM: one_divs_any STM: any_divs_zero STM: divides_invar_1 STM: divides_invar_2 STM: divisors_bound STM: only_pm_one_divs_one STM: divides_of_absvals STM: divides_reflexivity STM: divides_transitivity STM: divides_preorder STM: divides_anti_sym_n STM: divides_anti_sym STM: assoc_reln STM: divisor_of_sum STM: divisor_of_minus STM: divisor_of_mul STM: divides_mul STM: divisor_bound STM: divides_iff_rem_zero STM: divides_iff_div_exact STM: decidable__divides

STM: divides_instance

- ABS: $a \sim b$ assoced
- STM: assoced_wf
- STM: comb_for_assoced_wf
- STM: assoced_equiv_rel
- STM: decidable__assoced
- STM: divides_functionality_wrt_assoced
- STM: divides_weakening
- STM: assoced_weakening
- STM: assoced_transitivity
- STM: multiply_functionality_wrt_assoced
- STM: assoced_inversion
- STM: assoced_functionality_wrt_assoced
- STM: $assoced_elim$
- STM: mul_cancel_in_assoced
- STM: neg_assoced
- STM: absval_assoced
- STM: unit_chars
- STM: assoced_nelim
- STM: $pdivisor_bound$
- STM: divides_nchar
- ABS: $GCD(a;b;y) \operatorname{\mathbf{gcd}}_{-\mathbf{p}}$
- $STM: gcd_p_wf$
- STM: comb_for_gcd_p_wf
- $STM: gcd_p_functionality_wrt_assoced$
- STM: gcd_p_eq_args
- STM: gcd_p_zero

STM: gcd_p_one

STM: gcd_p_zero_rel

STM: gcd_p_sym

STM: gcd_p_sym_a

STM: gcd_p_neg_arg

STM: gcd_p_neg_arg_a

STM: gcd_p_neg_arg_2

STM: gcd_p_shift

STM: gcd_unique

STM: gcd_of_triple

ABS: gcd(a;b) gcd

STM: gcd_wf

STM: comb_for_gcd_wf

STM: gcd_sat_gcd_p

STM: gcd_sat_pred

STM: gcd_elim

STM: gcd_sym

STM: gcd_is_divisor_1

STM: gcd_is_divisor_2

STM: gcd_is_gcd

STM: quot_rem_exists_n

STM: $quot_rem_exists$

STM: gcd_exists_n

STM: gcd_ex_n

STM: gcd_exists

STM: bezout_ident_n

STM: bezout_ident

 $STM: gcd_p_mul$ STM: gcd_mul STM: gcd_assoc ABS: CoPrime(a,b) coprime STM: coprime_wf STM: comb_for_coprime_wf STM: $sq_stable_coprime$ ABS: reducible(a) reducible STM: reducible_wf ABS: atomic(a) **atomic** STM: atomic_wf STM: atomic_char ABS: prime(a) **prime** STM: prime_wf STM: self_divisor_mul STM: prime_imp_atomic STM: $prime_elim$ STM: coprime_intro STM: coprime_elim STM: coprime_elim_a STM: coprime_iff_ndivides STM: coprime_bezout_id0 STM: coprime_bezout_id1 STM: coprime_bezout_id2 STM: coprime_bezout_id STM: coprime_prod $STM: coprime_divisors_prod$

STM: $atomic_imp_prime$

STM: $prime_divs_prod$

- ABS: $a = b \mod m$ eqmod
- STM: eqmod_wf
- STM: comb_for_eqmod_wf
- ${\rm STM:} \ {\rm eqmod_weakening}$
- $STM: eqmod_transitivity$
- $STM: eqmod_inversion$
- $STM: eqmod_functionality_wrt_eqmod$
- $STM: eqmod_fun$
- $STM: add_functionality_wrt_eqmod$
- $STM: multiply_functionality_wrt_eqmod$
- STM: chrem_exists_aux
- STM: chrem_exists_aux_a
- STM: chrem_exists
- STM: chrem_exists_a
- ABS: fib(n) fib
- STM: fib_wf
- STM: comb_for_fib_wf
- STM: fib_coprime

 $http://www.nuprl.org/FDLcontent/p0_399846_/p83_7204_{num_thy_1}.html$